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1. Step-by-step Instruc�on on the Usage of ANPELA 

Analysis and subsequent performance assessment are started by clicking on the “Analysis” panel on the homepage of ANPELA. The collec�on of web services and the
whole process provided by ANPELA includes: (Step 1) uploading the quan�fica�on data, (Step 2) method's assump�on assessment and data transforma�on &
pretreatment, (Step 3) data filtering & missing value imputa�on, and (Step 4) performance assessment of the proteome quan�fica�on.

Step 1. Uploading Quan�fica�on Data 

By click “Upload Quan�fica�on Data”, users are allowed to upload their data in various formats generated by popular so�ware tools for label-free quan�fica�on. All
so�ware tools aim at processing the raw proteomics data acquired by 3 quan�fica�on measurements (SWATH-MS, peak intensity and spectral coun�ng). Users are
asked to upload the specific file containing the data generated by those tools, together with a label file indica�ng the classes of each sample (detail informa�on of the
file format can be found in the Sec�on 2 of this Manual). Moreover, in case that users want to process their data before ANPELA analysis, they are allowed to upload
their processed data in a unified format defined by ANPELA which could be readily found HERE ( Right Click to Save). By clicking the “Upload Data” bu�on, the
quan�fica�on data provided by the users can be uploaded for further analysis.

https://idrblab.org/anpela/download/unified_format.anpela/ANPELA_Unified_Data.csv


Three sets of sample data are also provided in this step facilita�ng a direct access and evalua�on of ANPELA. These sample data are all benchmark datasets collected
from the PRoteomics IDEn�fica�ons (PRIDE) database developed by the European Bioinforma�cs Ins�tute. Par�cularly, the sample data for SWATH-MS is the dataset
PXD000672 containing 12 non-tumorous samples and 12 samples of pa�ents with clear cell renal cell carcinoma (Guo T, et al. Nat Med. 21(4):407-413, 2015); the
sample data for protein intensity is the dataset PXD005144 with 66 samples of pancrea�c cancer pa�ents and 36 samples of chronic pancrea��s pa�ents (Saraswat M,
et al. Cancer Med. 6(7):1738-1751, 2017); and the sample data for spectral coun�ng is the dataset PXD001819 providing yeast cell lysat samples of different
concentra�ons (0.5 vs 50 fmol/microgram) acquired by MS2 spectral coun�ng (Ramus C, et al. J Proteomics. 132:51-62, 2016). By clicking the “Load Data” bu�on, the
sample dataset selected by the users can be uploaded for further analysis.

Step 2. Method's Assmup�on Assessment and Data Transforma�on & Pretreatment 

The manipula�on methods were reported to be based on their own sta�s�cal assump�on about the data, which might make them inappropriate for manipula�ng some
proteomic data. Taking pretreatment methods as examples, there were generally three types of assump�ons: (Assump�on A) all proteins were assumed to be equally
important; (Assump�on B) the level of protein abundance was assumed to be constant among all samples; (Assump�on C) the intensi�es of the vast majority of the
proteins were assumed to be unchanged under the studied condi�ons. Due to these dis�nct assump�ons, some methods may be fundamentally inappropriate for
certain dataset and cannot be assessed for the studied datasets. Therefore, before any performance assessment, users should first analyze the nature of their datasets,
and then assess and indicate whether the method’s assump�on held for these data.

Users are provided with the op�on to conduct pretreatment on their uploaded data. In total, 3 types of transforma�on methods frequently applied to manipulate the
label-free proteomics data are included. Furthermore, the current version of ANPELA offers 18 pretreatment methods popular for centering, scaling and normalizing the
proteomics data. A detail explana�on on each method is provided in the Sec�on 3 of this Manual. By clicking the “PROCESS” bu�on, a summary of the processed data
and a plot of the intensity distribu�on before and a�er data manipula�on are automa�cally generated. All resul�ng data and figures can be downloaded by clicking the
“Download” bu�on. Moreover, the sample outputs of "Summary of the Processed Data" and "Distribu�on of Protein Intensi�es" that performs interac�vely in the same
way as real output are provided.

https://www.ebi.ac.uk/pride/
https://www.ebi.ac.uk/
https://www.ebi.ac.uk/pride/archive/projects/PXD000672
https://www.ebi.ac.uk/pride/archive/projects/PXD005144
https://www.ebi.ac.uk/pride/archive/projects/PXD001819
https://idrblab.org/anpela/download/sample_output/Normalized_Data.csv
https://idrblab.org/anpela/download/sample_output/Normalized_Plot.jpg


Step 3. Data Filtering & Missing Value Imputa�on 

Data filtering and missing value imputa�on are subsequently provided in this step. The filtering method used here is the basic filtering, and 7 imputa�on methods
frequently applied to treat missing value are covered, which include Background Imputa�on, Bayesian Principal Component Imputa�on, Censored Imputa�on, K-nearest
Neighbor Imputa�on, Local Least Squares Imputa�on, Singular Value Decomposi�on and Zero Imputa�on. A detail explana�on on each imputa�on method is provided
in the Sec�on 3 of this Manual. By clicking the “PROCESS” bu�on, a summary of the processed data and a plot of the intensity distribu�on before and a�er data
manipula�on are automa�cally generated. All resul�ng data and figures can be downloaded by clicking the “Download” bu�on. Moreover, the sample outputs of
"Summary of the Processed Data" and "Distribu�on of Protein Intensi�es" that performs interac�vely in the same way as real output are provided.

https://idrblab.org/anpela/download/sample_output/Imputed_Data.csv
https://idrblab.org/anpela/download/sample_output/Imputed_Plot.jpg


Step 4. Performance Assessment of Label-free Quan�fica�on (LFQ) from Mul�ple Perspec�ves 

Five well-established criteria for a comprehensive evalua�on on the performance of LFQ are provided in ANPELA, and each criterion is either quan�ta�vely or
qualita�vely assessed by various metrics. These criteria include:

Criterion A: Precision of LFQ Based on Proteomes among Replicates
(Kuharev J, et al. Proteomics. 15(18):3140-3151, 2015)

Different quan�fica�on measurements, various kinds of so�ware for pre-processing raw proteomics data, and diverse methods for data manipula�on profoundly affect
the precision of LFQ, which can be assessed by the coefficient of varia�on (CV) of reported protein intensi�es among replicates (Navarro P, et al. Nat Biotechnol.
34(11):1130-1136, 2016; Kuharev J, et al. Proteomics. 15(18):3140-3151, 2015). In par�cular, the metric CV is designed to reflect LFQ’s ability to reduce varia�on among
replicates, and therefore to enhance the technical reproducibility (Chawade A, et al. J Proteome Res. 13(6):3114-3120, 2014). The lower value (illustrated by boxplots
below) of CV denotes more thorough removal of experimentally induced noise and indicates be�er precision of LFQ. Moreover, the sample outputs of "Distribu�on of
CV" that performs interac�vely in the same way as real output are provided.

https://idrblab.org/anpela/download/sample_output/Criteria_A_compressed.jpg
https://idrblab.org/anpela/download/sample_output/Criteria_A_compressed.jpg


Criterion B: Classifica�on Ability of LFQ between Dis�nct Sample Groups
(Griffin NM, et al. Nat Biotechnol. 28(1):83-89, 2010)

An appropriate LFQ is expected to retain or even enlarge the difference in proteomics data between two dis�nct sample groups (Griffin NM, et al. Nat Biotechnol.
28(1):83-89, 2010). A heatmap hierarchically clustering samples based on their protein intensi�es is therefore frequently used as an effec�ve metric to assess LFQ’s
classifica�on ability (Griffin NM, et al. Nat Biotechnol. 28(1):83-89, 2010). Firstly, the total number of protein intensi�es in each sample is reduced by feature selec�on.
Then, proteins (rows) and samples (columns) are clustered based on their similari�es in protein intensity profile. Detail process on how to assess LFQ’s classifica�on
ability can be found in the pres�gious publica�on by Griffin NM, et al. (Griffin NM, et al. Nat Biotechnol. 28(1):83-89, 2010). Moreover, the sample outputs of "Two-way
clustering of differen�al proteins" that performs interac�vely in the same way as real output are provided.

Criterion C: Differen�al Expression Analysis Based on Reproducibility-op�miza�on
(Karpievitch YV, et al. BMC Bioinforma�cs. 13(S16):S5, 2012)

To avoid overfi�ng or confounding in LFQ, the distribu�on of P-values of protein intensi�es between dis�nct sample groups is examined (Risso D, et al. Nat Biotechnol.
32(9):896-902, 2014). Ideally, one expects a uniform distribu�on for the bulk of non-differen�ally expressed proteins, with a peak in the [0.00, 0.05] interval
corresponding to proteins with differen�al intensity (Risso D, et al. Nat Biotechnol. 32(9):896-902, 2014). Moreover, the volcano plot colored proteins with differen�al
intensity can give a glance of the total number of differen�ally expressed proteins (Välikangas T, et al. Brief Bioinform. doi:10.1093/bib/bbx054, 2017). In the proteomics
(and other OMICs) studies that explore the mechanism underlining complex biological process, a limited number of differen�ally expressed proteins may resulted in
false discovery (Blaise BJ. Anal Chem. 85(19):8943-8950, 2013). Therefore, the differen�al significance of protein intensi�es between sample groups measured by P-
values is firstly calculated using the reproducibility-op�mized test sta�s�c (ROTS) package in ANPELA (Pursiheimo A, et al. J Proteome Res. 14(10):4118-4126, 2015).
Secondly, the distribu�on of P-values and the volcano plot are provided. Skewed distribu�on of P-values may indicate overfi�ng and/or confounding (Karpievitch YV, et
al. BMC Bioinforma�cs. 13(S16):S5, 2012). Moreover, the sample outputs of "Distriub�on of P-values" and "Volcano plot of protein markers" that perform interac�vely
in the same way as real output are provided.

https://idrblab.org/anpela/download/sample_output/Criteria_B_compressed.jpg
https://idrblab.org/anpela/download/sample_output/Criteria_B_compressed.jpg
https://idrblab.org/anpela/download/sample_output/Criteria_C_01_compressed.jpg
https://idrblab.org/anpela/download/sample_output/Criteria_C_02_compressed.jpg


Criterion D: Reproducibility of the Iden�fied Protein Markers among Different Datasets
(Li B, et al. Nucleic Acids Res. 45(W1):162-170, 2017)

Consistency score is a popular criterion used to represent the robustness of protein marker iden�fica�on (Li B, et al. Nucleic Acids Res. 45(W1):162-170, 2017), which is
calculated to quan�ta�vely measure the overlap of iden�fied protein markers among different par��ons of a given dataset (Wang X, et al. Mol Biosyst. 11(5):1235-
1240, 2015). The higher consistency score represents the more robust results in protein marker iden�fica�on (Li B, et al. Nucleic Acids Res. 45(W1):162-170, 2017).
Thus, the random sampling is firstly preformed within LFQ dataset to produce mul�ple sub-datasets. Then, each protein is ranked according to its significance measured
by q-value and absolute fold changes. Thirdly, top-ranked proteins in each sub-dataset are selected as markers. Finally, a consistency score is calculated based on these
markers using equa�on (Wang X, et al. Mol Biosyst. 11(5):1235-1240, 2015) as follow:

where C is the total number of sub-datasets, I  indicates a set of significant protein makers containing the intersec�ons of any i sub-datasets, and n  refers to the
number of markers in the intersec�on S. Moreover, the sample outputs of "Venn diagram illustra�ng marker numbers" that performs interac�vely in the same way as
real output are provided.

Criterion E: Accuracy of LFQ Based on Spiked and Background Proteins
(Navarro P, et al. Nat Biotechnol. 34(11):1130-1136, 2016)

Addi�onal experimental data (e.g. spiked proteins) are frequently generated and used as references to validate or adjust the performance of LFQ (Kuharev J, et al.
Proteomics. 15(18):3140-3151, 2015; Navarro P, et al. Nat Biotechnol. 34(11):1130-1136, 2016), and the expected log fold changes (logFCs) are known both for the
spiked and the background proteins (the expected LogFC for background proteins equals to zero) (Välikangas T, et al. Brief Bioinform. doi:10.1093/bib/bbx054, 2017). In
ANPELA, the reproducibility-op�mized test sta�s�c (ROTS) is firstly applied to iden�fy the differen�ally expressed proteins. Then, the true posi�ve rate (TPR), the true
nega�ve rate (TNR) and the precision (PRE) for the success discovery of the spiked proteins are calculated. The higher the TPR, the more accurate the LFQ achieves.
Moreover, the logFCs of protein intensi�es (for both spiked and background proteins) between two sample groups are calculated, and the level of correspondence
between the quan�fica�on and the expected logFCs is then assessed by the mean squared error (MSE). The performance of LFQ can be reflected by how well the
quan�fica�on logFCs corresponded to what are expected based on the references (Välikangas T, et al. Brief Bioinform. doi:10.1093/bib/bbx054, 2017). Moreover, a
boxplot illustra�ng the devia�ons of both quan�fica�on and expected logFCs of the spiked proteins is provided. The preferred median in boxplot would be zero with
minimized devia�ons. The required format of the file providing the informa�on of the spiked proteins can be readily downloaded HERE ( Right Click to Save). The
users will be asked to upload this file in the “Performance Assessment” step, and mul�ple metrics under this criterion will be calculated to the users for evalua�ng their
selected quan�fica�on workflow. Moreover, the sample outputs of "Devia�ons between the quan�fica�on and the expected LogFCs of the spiked proteins", "Devia�ons
of both spiked and background proteins between the quan�fica�on and the expected", "Metrics measuring LFQ performance" and "ROC curve of classifica�on
accuracy" that perform interac�vely in the same way as real output are provided.

i S

https://idrblab.org/anpela/download/sample_output/Criteria_D_compressed.jpg
https://idrblab.org/anpela/download/Gold_Standard_file.csv
https://idrblab.org/anpela/download/sample_output/Assessment_Data.csv
https://idrblab.org/anpela/download/sample_output/Criteria_E_01_compressed.jpg
https://idrblab.org/anpela/download/sample_output/Criteria_E_01_compressed.jpg
https://idrblab.org/anpela/download/sample_output/Criteria_E_02_compressed.jpg
https://idrblab.org/anpela/download/sample_output/Criteria_E_03_compressed.jpg
https://idrblab.org/anpela/download/sample_output/Criteria_E_03_compressed.jpg


2. Various Kinds of Quan�fica�on So�ware for Pre-processing Raw Proteomics Data 

ANPELA accepts a variety of data generated by 18 kinds of popular quan�fica�on so�ware, all of which aim at pre-processing the raw proteomics data acquired by 3
quan�fica�on measurements:

2.1 A List of So�ware for Pre-processing the Data Acquired Based on SWATH-MS 

(so�ware sorted alphabe�cally)

 DIA-UMPIRE (h�p://diaumpire.sourceforge.net)

A comprehensive computa�onal workflow and open-source so�ware for processing the data independent acquisi�on (DIA) mass spectrometry-based proteomics data
(Tsou CC, et al. Nat Methods. 12(3):258-264, 2015). It enables untargeted protein quan�fica�on based on the SWATH-MS data obtained by the Orbitrap family of mass
spectrometers (Tsou CC, et al. Proteomics. 16(15-16):2257-2271, 2016), and also enables targeted extrac�on of quan�ta�ve informa�on based on pep�des ini�ally
iden�fied in only a subset of the samples, resul�ng in more consistent quan�fica�on across mul�ple samples (Tsou CC, et al. Nat Methods. 12(3):258-264, 2015). It has
been widely used to iden�fy similar number of pep�de ions with be�er iden�fica�on reproducibility between replicates and samples, than conven�onal data-
dependent acquisi�on (Bruderer R, et al. Mol Cell Proteomics. 14(5):1400-1410, 2015). Moreover, it has also been frequently used to process untargeted data for
iden�fying host cell proteins (Kreimer S, et al. Anal Chem. 89(10):5294-5302, 2017) and to export the pep�de iden�fica�on results of pseudo-MS2 spectra (Wu L, et al.
Proteomics. 16(15-16):2272-2283, 2016). The resul�ng file of DIA-UMPIRE accepted by ANPELA is the “DIAumpire_ProteinSummary_XXXX” file, and the format of
which could be readily found HERE ( Right Click to Save).

 OpenSWATH (h�p://www.openswath.org)

An open-source so�ware that allows targeted analysis of DIA data based on SWATH-MS in an automated, high-throughput fashion (Röst HL, et al. Nat Biotechnol.
32(3):219-223, 2014). It is a cross-pla�orm so�ware, wri�en in C++, that relies only on open data formats, allowing it to analyze DIA data from mul�ple instrument
vendors and is integrated and distributed together with OpenMS (Röst HL, et al. Nat Methods. 13(9):777-783, 2016). It is widely applied to analyze the proteome of
streptococcus pyogenes (Röst HL, et al. Nat Biotechnol. 32(3):219-223, 2014), to es�mate q-values of pep�de and protein level (Rosenberger G, et al. Nat Methods
14(9):921-927, 2017). Its generic u�lity for all types of modifica�on and its scalability could enable confident quan�fica�on of the post-transla�onal modifica�ons in
DIA-based large-scale studies (Rosenberger G, et al. Nat Biotechnol 35(8):781-788, 2017). The resul�ng file of OpenSWATH accepted by ANPELA is the OpenSWATH file
in csv format, and the format of which could be readily found HERE ( Right Click to Save).

 PeakView (h�ps://sciex.com/products/so�ware/peakview-so�ware)

A commercial so�ware which covers all major components of in-silico processes in a SWATH workflow, from extended assay library building to final sta�s�cal analysis
and repor�ng (Li S, et al. J Proteome Res. 16(2):738-747, 2017; Wu JX, et al. Mol Cell Proteomics. 15(7):2501-2514, 2016). PeakView uses a set of processing se�ngs to

https://idrblab.org/anpela/download/SWATH_MS/DIAumpire_ProteinSummary.csv
https://idrblab.org/anpela/download/SWATH_MS/example_OpenSWATH.csv


filter the ion library and determine which pep�des or transi�ons should be used for proteome quan�fica�on (Anjo SI, et al. Proteomics. 17(3-4):1600278, 2017), which
is demonstrated to be a powerful strategy par�cularly for biomarker discovery and clinical field (Anjo SI, et al. Proteomics. 17(3-4):1600278, 2017). It was used for the
N-linked glycoproteins enrichment prior to tryp�c diges�on, library crea�on, and analysis (Liu Y, et al. Proteomics. 13(8):1247-1256, 2013), evalua�ng the amount of
sample needed for PCT-SWATH analysis (Shao S, et al. Proteomics. 15(21):3711-3721, 2015) and selec�ng the best method for extrac�ng green algae (Gao Y, et al.
Electrophoresis. 37(10):1270-1276, 2016). The resul�ng file of PeakView accepted by ANPELA is the “ProtSummary_XXXX” file, and the format of which could be
readily found HERE ( Right Click to Save).

 Skyline (h�p://skyline.maccosslab.org)

A freely-available and open source Windows client applica�on for building selected reac�on monitoring, mul�ple reac�on monitoring, parallel reac�on monitoring
(targeted MS/MS), DIA/SWATH and targeted DDA with MS1 quan�ta�ve methods (Broudy D, et al. Bioinforma�cs. 30(17):2521-2523, 2014). Skyline was explicitly
designed to accelerate targeted proteomics experimenta�on and foster broad sharing of both methods and results across instrument pla�orms (MacLean B, et al.
Bioinforma�cs. 26(7):966-968, 2010). So far, it has been applied to the pep�de and transi�on selec�on for targeted experiments (Schilling B, et al. Mol Cell Proteomics.
11(5):202-214, 2012), the reten�on �me determina�on for scheduled MS experiments (Escher C, et al. Proteomics. 12(8):1111-1121, 2012) and the isola�on window
determina�on for DIA experiments (Zhang Y, et al. J Proteome Res. 14(10):4359-4371, 2015). The resul�ng file of Skyline accepted by ANPELA is the
“Skyline_XXXX_XXXX” file in tsv format, and the format of which could be readily found HERE ( Right Click to Save).

 Spectronaut (h�p://www.spectronaut.org)

A computa�onal tool for targeted analysis of DIA measurement based on SWATH-MS independent of mass spectrometer vendor (Bruderer R, et al. Proteomics. 16(15-
16):2246-2256, 2016; Bruderer R, et al. Mol Cell Proteomics. 14(5):1400-1410, 2015). It demonstrates a powerful ability to peak picking and automa�c interference
correc�on by u�lizing the spectral libraries generated from the raw data acquired on various instrument pla�orms, and is specifically designed to support spectral-
library-free workflow and targeted analysis of OMICs data by hyper reac�on monitoring (Navarro P, et al. Nat Biotechnol. 34(11):1130-1136, 2016; Li S, et al. J Proteome
Res. 16(2):738-747, 2017). It has been widely applied to DIA-based quan�ta�ve proteome profiling (Bruderer R, et al. Mol Cell Proteomics. 14(5):1400-1410, 2015),
improved proteomic quan�fica�on by sequen�al window acquisi�on (Li S, et al. J Proteome Res. 16(2):738-747, 2017) and high-precision indexed reten�on �me
predic�on in targeted DIA analysis (Bruderer R, et al. Proteomics. 16(15-16):2246-2256, 2016). The resul�ng file of Spectronaut accepted by ANPELA is the Spectronaut
file in tsv format, and the format of which could be readily found HERE ( Right Click to Save).

2.2 A List of So�ware for Pre-processing the Data Acquired Based on Precursor Ion Signal Intensity (Peak Intensity) 

(so�ware sorted alphabe�cally)

 MaxQuant (h�p://www.maxquant.org)

An integrated suite of algorithms specifically developed for processing the high-resolu�on, quan�ta�ve mass-spectrometry data, which is one of the most frequently
used pla�orms for analyzing the MS-based proteome informa�on (Cox J, et al. Nat Biotechnol. 26(12):1367-1372, 2008; Tyanova S, et al. Nat Protoc. 11(12):2301-2319,
2016). It is widely used to analyze the tandem spectra generated by collision-induced dissocia�on (CID), the higher-energy collisional dissocia�on (HECD) and the
electron transfer dissocia�on (ETD) (Tyanova S, et al. Proteomics. 15(8):1453-1456, 2015). MaxQuant is used for analyzing data derived from all major rela�ve
quan�fica�on techniques, including label-free quan�fica�on (Tyanova S, et al. Nat Protoc. 11(12):2301-2319, 2016), MS1-level labeling readouts (Millikin RJ, et al. J
Proteome Res, 2017) and isobaric MS2-level labeling readouts (Weisser H, et al. J Proteome Res. 12(4):1628-1644, 2013). The resul�ng file of MaxQuant accepted by
ANPELA is the “proteinGroups.txt” under a folder named “txt”, and the format of which could be readily found HERE ( Right Click to Save).

 MFPaQ (h�p://mfpaq.sourceforge.net)

A web-based applica�on that runs on a server on which Mascot Server 2.1 and Perl 5.8 must be installed. To perform quan�fica�on, the external module—Extract
Daemon is developed to extract intensity values from raw proteomics data (Bouyssié D, et al. Mol Cell Proteomics. 6(9):1621-1637, 2007). A dis�nguished key feature of
MFPaQ lines in its quan�fica�on module, which provides informa�on on protein rela�ve expression following the isotopic labeling and iden�fica�on with the Mascot.
(Gau�er V, et al. Mol Cell Proteomics. 11(8):527-539, 2012). Moreover, it has been applied to the quan�ta�ve study of membrane proteins from primary human
endothelial cells (Bouyssié D, et al. Mol Cell Proteomics. 6(9):1621-1637, 2007), and SILAC-based proteomic profiling of the human MDA-MB-231 metasta�c breast
cancer cell line (Hoedt E, et al. PLoS One. 9(8):e104563, 2014). The resul�ng file of MFPaQ accepted by ANPELA is the MFPaQ file, and the format of which could be
readily found HERE ( Right Click to Save).

 OpenMS (h�p://www.openms.de)

A robust, open-source, cross-pla�orm so�ware specifically designed for the flexible and reproducible analysis of high-throughput MS data (Sturm M, et al. BMC
Bioinforma�cs. 9:163, 2008; Weisser H, et al. J Proteome Res. 12(4):1628-1644, 2013). It uses modern so�ware engineering concepts with an emphasis on modularity,
reusability and extensive tes�ng using con�nuous integra�on, and implements common mass spectrometric data processing tasks through a well-defined applica�on
programming interface and through the standardized open data format. (Röst HL, et al. Nat Methods. 13(9):741-748, 2016). OpenMS is widely applied to the
quan�ta�ve and variant enabled mapping of pep�des to genomes (Schlaffner CN, et al. Cell Syst. 5(2):152-156, 2017), the analysis of cerebrospinal fluid proteome in
alzheimer’s (Khoonsari PE, et al. PLoS One. 11(3):e0150672 2016) and quan�ta�ve analysis of label-free LC-MS data for compara�ve candidate biomarker studies
(Hoekman B, et al. Mol Cell Proteomics. 11(6):M111, 2012). The resul�ng file of OpenMS accepted by ANPELA is the OpenMS file, and the format of which could be
readily found HERE ( Right Click to Save).

 PEAKS (h�p://www.bioinfor.com)

A so�ware pla�orm with complete solu�on for discovery proteomics, including the protein iden�fica�on and quan�fica�on, analysis of pos�ransla�onal modifica�on
and sequence variants, and pep�de/protein de novo sequencing (Ma B, et al. Rapid Commun Mass Spectrom. 17(20):2337-2342, 2003). It relies on a sophis�cated
dynamic programming algorithm to efficiently compute the best pep�de sequences whose fragment ions can best interpret the peaks in the MS/MS spectrum. It is thus
a useful tool for the analysis of protein iden�fica�on and quan�fica�on of known and unknown genomes (Ma B, et al. Rapid Commun Mass Spectrom. 17(20):2337-
2342, 2003). PEAKS has matured into a comprehensive proteomics pla�orm suppor�ng the analysis of label-free data and label-based data, such as
TMT(MS2,MS3)/iTRAQ, SILAC, ICAT and so on. It achieves significantly improved accuracy and sensi�vity over other commonly applied so�ware packages (Zhang J, et al.
Mol Cell Proteomics. 11(4):M111, 2012). The resul�ng file of PEAKS accepted by ANPELA is the “proteins.csv” file under a folder named “PEAKS XXXX”, and the format
of which could be readily found HERE ( Right Click to Save).

https://idrblab.org/anpela/download/SWATH_MS/ProtSummary_201604130950.csv
https://idrblab.org/anpela/download/SWATH_MS/Skyline_HYE124_TTOF6600_32fix_it1_IntLibFixed1603.tsv
https://idrblab.org/anpela/download/SWATH_MS/example_Spectronaut.tsv
https://idrblab.org/anpela/download/Peak_Intensity/proteinGroups_Peak_Intensity.txt
https://idrblab.org/anpela/download/Peak_Intensity/example_MFPaQ_Peak_Intensity.csv
https://idrblab.org/anpela/download/Peak_Intensity/example_OpenMS.csv
https://idrblab.org/anpela/download/Peak_Intensity/proteins.csv


 Progenesis (h�p://www.nonlinear.com/progenesis)

A new genera�on of bioinforma�cs vehicle targe�ng small molecule discovery analysis for metabolomics and proteomics, which quan�fies proteins based on pep�de
ion signal peak intensity (Zhang J, et al. Anal Bioanal Chem. 408(14):3881-3890, 2016). Progenesis allows full operator control over every processing step including
alignment of pep�de ion signal landscapes and indeed individual pep�de ion signal peaks (Al Shweiki MR, et al. J Proteome Res. 16(4):1410-1424, 2017). It can be used
for protein label-free quan�fica�on and peak picking with the automa�c sensi�vity method, that uses a noise es�ma�on algorithm to determine the noise level of the
data (Almeida AM, et al. J Proteomics. 152:206-215, 2017). The resul�ng file of Progenesis accepted by ANPELA is the Progenesis file in csv format, and the format of
which could be readily found HERE ( Right Click to Save).

 Proteios SE (h�p://www.proteios.org)

ProSE integrates protein iden�fica�on search engine access into several proteomic workflows, both gel-based and liquid chromatography-based, and allows seamless
combina�on of search results, protein inference, protein annota�on and quan�ta�on tools (Gärdén P, et al. Bioinforma�cs. 21(9):2085-2087, 2005). It is targeted for
large projects with shared data, integrates sample tracking and aims at becoming a standard analysis pla�orm for proteomics, whose major feature is the automated
linking of data from different parts of proteomic workflows (Häkkinen J, et al. J Proteome Res. 8(6):3037-3043, 2009). It has built-in support to several protein
iden�fica�on engines such as Mascot, X!Tandem, and combines search results from mul�ple search engines (Végvári A, et al. Mol Cell J Proteomics. 75(1):202-210,
2011), and automa�cally generates the protein iden�fica�on reports containing informa�on required for publica�on of proteomics results (Levander F, et al.
Proteomics. 7(5):668-674, 2007). The resul�ng file of Proteios SE accepted by ANPELA is the Proteios SE file, and the format of which could be readily found HERE (
Right Click to Save).

 Scaffold (h�p://www.proteomeso�ware.com/products/scaffold)

A commercial bioinforma�c tool, which a�empts to increase the confidence in protein iden�fica�on reports through the use of several sta�s�cal methods (Searle BC.
Proteomics. 10(6):1265-9, 2016). It supports a wide variety of search engines and uses a pipeline of several pep�de and protein valida�on methods a�er an ini�al
database-search analysis (Codrea MC, et al. Adv Exp Med Biol. 919:203-215, 2016). Scaffold has been widely applied to the iden�fica�on of proteome for a new target
to inhibit yellow fever virus replica�on (Vido�o A, et al. J Proteome Res. 16(4):1542-1555, 2017), analysis of the follicle fluid proteome for preconcep�on folic acid use
(Twigt JM, et al. Eur J Clin Invest. 45(8):833-41, 2015) and iden�fiable analysis of effects of cadmium exposure on the gill proteome of Co�us gobio (Dorts J, et al. Aquat
Toxicol. 154:87-96, 2014). The resul�ng file of Scaffold accepted by ANPELA is the “scaffoldXXXX” file, and the format of which could be readily found HERE ( Right
Click to Save).

 Thermo Proteome Discoverer (h�p://thermo-msf-parser.googlecode.com)

A so�ware for workflow-driven data analysis in proteomics integra�ng all different steps in a quan�ta�ve proteomics experiment (MS/MS spectrum extrac�on, pep�de
iden�fica�on and quan�fica�on) into the user-configurable, automated workflows (Colaert N, et al. J Proteome Res. 10(8):3840-3843, 2011; Veit J, et al. J Proteome Res.
15(9):3441-3448, 2016). It has a convenient graphical user interface in which users can load raw data directly from the instrument and explore and analyze it because it
supports mul�ple sequence database search engines (e.g., Sequest HT, Mascot), the spectral library searching, the pep�de spectrum-match valida�on (e.g., Percolator),
as well as various quan�fica�on techniques, like isobaric mass tagging (e.g., iTRAQ, TMT) or SILAC (Veit J, et al. J Proteome Res. 15(9):3441-3448, 2016). Proteome
Discoverer is applied to the iTRAQ (isobaric tag for rela�ve and absolute quan�ta�on)-based quan�ta�ve analysis of protein mixtures (Casado-Vela J, et al. Proteomics.
10(2):343-347, 2010). The resul�ng file of Thermo Proteome Discoverer accepted by ANPELA is the Proteome Discoverer file, and the format of which could be readily
found HERE ( Right Click to Save).

2.3 A List of So�ware for Pre-processing the Data Acquired Based on Spectral Coun�ng 

(so�ware sorted alphabe�cally)

 Abacus (h�p://abacustpp.sourceforge.net)

A computa�onal tool for extrac�ng and preprocessing spectral count data for label-free quan�ta�ve proteomic analysis (Fermin D, et al. Proteomics. 11(7):1340-1345,
2011). It aims at streamlining analysis of spectral count data by providing an automated, easy to use solu�on which extracts the informa�on from proteomic datasets
for subsequent sta�s�cal analysis (Fermin D, et al. Proteomics. 11(7):1340-1345, 2011). However, the approach has the disadvantage of losing informa�on or a�emp�ng
to appor�on large numbers of spectra on the basis of rela�vely small sets of differen�a�ng spectra (Chen YY, et. al. Anal Bioanal Chem. 404(4):1115-1125, 2012). It is
compa�ble with the widely used trans-proteomic pipeline suite of tools and comes with a graphical user interface making it easy to interact with the program (Fermin
D, et al. Proteomics. 11(7):1340-1345, 2011). The resul�ng file of Abacus accepted by ANPELA is the “abacus_data output.csv” file under a folder named
“abacus_data”, and the format of which could be readily found HERE ( Right Click to Save).

 Census (h�p://fields.scripps.edu/census)

A quan�ta�ve so�ware tool which can analyze high-throughput mass spectrometry data from shotgun proteomics experiments in an efficient way and various stable
isotope labeling experiments (e.g., 15N, 18O, SILAC, iTRAQ and TMT) in addi�on to the labeling-free experiments (Park SK, et al. Curr Protoc Bioinforma�cs. Chapter
13:Unit 13.12.1-11, 2010). What makes Census differen�ated most from other quan�ta�ve tools is its flexibility to handle most types of quan�ta�ve proteomics labeling
strategies, as well as label-free experiment with mul�ple sta�s�cal algorithms to improve quality of results (Park SK, et al. Nat Methods. 5(4):319-322, 2008). Census
can be used for large-scale differen�al proteome analysis in plasmodium falciparum under drug treatment (Prieto JH, et al. PLoS One. 3(12):e4098, 2008), and
proteomic analysis of protein turnover by metabolic whole rodent pulse-chase isotopic labeling (Savas JN, et al. Methods Mol Biol. 1410:293-304, 2016). The resul�ng
file of Census accepted by ANPELA is the Census file, and the format of which could be readily found HERE ( Right Click to Save).

 DTASelect (h�p://fields.scripps.edu/DTASelect)

A Java tool that is used to organize, filter, and interpret results generated by SEQUEST (one of the most widely used protein database searching programs for tandem
mass spectrometry) (Cociorva D, et al. Curr Protoc Bioinforma�cs. Chapter 13:Unit 13.4, 2007). It assembles protein-level informa�on from pep�de data and focuses on
pep�des of interest by sweeping away the less likely iden�fica�on (Cociorva D, et al. Curr Protoc Bioinforma�cs. Chapter 13:Unit 13.4, 2007). It makes more complex
experiments feasible by streamlining data analysis for proteomics (Tabb DL, et al. J Proteome Res. 1(1):21-6, 2002). It can be used for a proteogenomic study with a
controlled protein false discovery rate (Park GW, et al. J Proteome Res. 15(11):4082-4090, 2016), and data analysis of palmitoylated protein iden�fica�ons (Wan J, et al.
Nat Protoc. 2(7):1573-1584, 2007). The resul�ng file of DTASelect accepted by ANPELA is the DTASelect file, and the format of which could be readily found HERE (
Right Click to Save).

https://idrblab.org/anpela/download/Peak_Intensity/Progenesis_guide_Output.csv
https://idrblab.org/anpela/download/Peak_Intensity/example_Proteios_SE.csv
https://idrblab.org/anpela/download/Peak_Intensity/scaffold-label-free_Peak_Intensity.csv
https://idrblab.org/anpela/download/Peak_Intensity/example_Proteome_Discoverer.csv
https://idrblab.org/anpela/download/Spectral_Counting/abacus_data_output.csv
https://idrblab.org/anpela/download/Spectral_Counting/example_Census.txt
https://idrblab.org/anpela/download/Spectral_Counting/example_DTASelect.csv


 IRMa-hEIDI (h�p://biodev.extra.cea.fr/docs/irma)

The IRMa toolbox provides an interac�ve applica�on to assist in the valida�on of Mascot search results, and allows automa�c filtering of Mascot iden�fica�on results as
well as manual confirma�on or rejec�on of individual PSM (a match between a fragmenta�on mass spectrum and a pep�de) (Dupierris V, et al. Bioinforma�cs.
25(15):1980-1981, 2009). Its main originality is to filter matches rather than iden�fied proteins and its features are easy naviga�on within iden�fica�on result and batch
mode to automa�cally validate mul�ple iden�fica�on results (Dupierris V, et al. Bioinforma�cs. 25(15):1980-1981, 2009). The IRMa-hEIDI is used to filter the spectral
count workflows results of several label-free bioinforma�cs tools, coupling Mascot pep�de iden�fica�on with IRMa valida�on and hEIDI grouping and comparison
ended up with the best compromise between sensi�vity and false discovery propor�on (Ramus C, et al. J Proteomics. 132:51-62, 2016; Ramus C, et al. Data Brief. 6:286-
294, 2015). The resul�ng file of IRMa-hEIDI accepted by ANPELA is the IRMa-hEIDI file, and the format of which could be readily found HERE ( Right Click to Save).

 MaxQuant (h�p://www.maxquant.org)

An integrated suite of algorithms specifically developed for processing high-resolu�on, quan�ta�ve MS data, which has been keeping up with recent advances in high-
resolu�on instrumenta�on and with the development of fragmenta�on techniques (Cox J, et al. Nat Biotechnol. 26(12):1367-1372, 2008; Tyanova S, et al. Nat Protoc.
11(12):2301-2319, 2016). It has matured into a comprehensive proteomics pla�orm suppor�ng the analysis of MS data generated by the MS systems from most
vendors, and integrated a mul�tude of algorithms (Tyanova S, et al. Proteomics. 15(8):1453-1456, 2015). It substan�ally improves mass precision as well as mass
accuracy (Neuhauser N, et al. Mol Cell Proteomics. 11(11):1500-1509, 2012). It can be used for iden�fica�on of ubiquityla�on and SUMOyla�on sites a�er the
ubiquitylated pep�des and SCX-frac�onated SUMO pep�des which were analyzed separately by LC–MS/MS (McManus FP, et al. Nat Protoc. 12(11):2342-2358, 2017),
comprehensive profiling of pancrea�c �ssue proteome (Liu CW, et al. Methods Mol Biol. doi: 10.1007/7651_2017_77, 2017) and label-free quan�ta�ve analysis on the
cispla�n resistance in ovarian cancer cells (Wang F, et al. Cell Mol Biol. 63(5):25-28, 2017). The resul�ng file of MaxQuant accepted by ANPELA is the
“proteinGroups.txt” under a folder named “txt”, and the format of which could be readily found HERE ( Right Click to Save).

 MFPaQ (h�p://mfpaq.sourceforge.net)

A so�ware tool that facilitates organiza�on, mining, and valida�on of Mascot results and offers different func�onali�es to work on validated protein lists, as well as data
quan�fica�on using isotopic labeling methods or label free approaches (Bouyssié D, et al. Mol Cell Proteomics. 6(9):1621-1637, 2007). MFPaQ extracts quan�ta�ve data
from raw files obtained by nano-LC-MS/MS, calculates pep�de ra�os, and generates a non-redundant list of proteins iden�fied in a mul�search experiment with their
calculated averaged and normalized ra�o (Bouyssié D, et al. Mol Cell Proteomics. 6(9):1621-1637, 2007). It has been applied to the large scale analysis of the human
inflammatory endothelial cells (Gau�er V, et al. Mol Cell Proteomics. 11(8):527-539, 2012), and the label-free quan�fica�on of cerebrospinal fluid by combining pep�de
ligand library treatment (Mouton-Barbosa E, et al. Mol Cell Proteomics. 9(5):1006-1021, 2010). The resul�ng file of MFPaQ accepted by ANPELA is the MFPaQ file, and
the format of which could be readily found HERE ( Right Click to Save).

 ProteinProphet (h�p://proteinprophet.sourceforge.net)

A sta�s�cal model which is designed for compu�ng probabili�es that proteins are present in a sample on the basis of pep�des assigned to tandem mass (MS/MS)
spectra acquired from a proteoly�c digest of the sample (Nesvizhskii AI, et al. Anal Chem. 75(17):4646-4658, 2003). It allows the filtering of large-scale proteomics data
with predictable sensi�vity and false posi�ve iden�fica�on error rates (Nesvizhskii AI, et al. Anal Chem. 75(17):4646-4658, 2003). It was used to discriminate true
assignments of MS/MS spectra to pep�de sequences from false assignments, to assign a probability value for each iden�fied pep�de, and to compute sensi�vity and
error rate for the assignment of spectra to sequences in each experiment (Keller A, et al. Anal Chem. 74(20):5383-5392, 2002). It was also used to infer the protein
iden�fica�ons and to compute probabili�es that a protein had been correctly iden�fied, based on the available pep�de sequence evidence (Nesvizhskii AI, et al. Anal
Chem. 75(17):4646-4658, 2003; Yan W, et al. Mol Cell Proteomics. 3(10):1039-1041, 2004). The resul�ng file of ProteinProphet accepted by ANPELA is the
ProteinProphet file, and the format of which could be readily found HERE ( Right Click to Save).

 Scaffold (h�p://www.proteomeso�ware.com/products/scaffold)

A feature-rich so�ware suite to assist in analysis, visualiza�on, quan�fica�on, annota�on and valida�on of complex LC-MS/MS experiments (Codrea MC, et al. Adv Exp
Med Biol. 919:203-215, 2016). It exports the sample reports to Microso� Excel, and relevant informa�on and annota�ons for each protein were searched from
databases including Swiss-Prot, Human Protein Reference Database, Entrez Gene, and the Plasma Proteome Database (Cho CK, et al. Mol Cell Proteomics. 6(8):1406-
1415, 2007). Scaffold was applied for the tryp�c pep�de product ion MS2 spectral processing, false discovery rate assessment, and protein iden�fica�on (Garbis SD, et
al. Anal Chem. 83(3):708-718, 2011). It has been widely used to the label free quan�ta�on and labeled quan�ta�on in breast cancer pa�ents with thick white or thick
yellow tongue fur (Cao MQ, et al. Zhong Xi Yi Jie He Xue Bao. 9(3):275-280, 2011), and the analysis of the follicle fluid proteome in preconcep�on folic acid use (Twigt
JM, et al. Eur J Clin Invest. 45(8):833-841, 2015). The resul�ng file of Scaffold accepted by ANPELA is the “scaffoldXXXX” file, and the format of which could be readily
found HERE ( Right Click to Save).

3. A Variety of Methods for Data Manipula�on at Different Manipula�on Stages 

Users are provided with the op�on to conduct transforma�on, pretreatment and imputa�on on their uploaded data. In total, 3 transforma�on, 18 pretreatment and 7
imputa�on methods frequently applied to manipulate the label-free proteomics data are provided in the current version of ANPELA.

3.1 Methods for Data Transforma�on 

(methods sorted alphabe�cally)

 Box-cox Transforma�on

Box & Cox proposed a parametric power transforma�on technique in order to reduce anomalies such as non-addi�vity, non-normality and heteroscedas�city (Sakia RM.
The Sta�s�cian. 41:169-178, 1992). This transforma�on has been extensively studied, and an a�empt is made to review the corresponding studies rela�ng to this
transforma�on (Sakia RM. The Sta�s�cian. 41:169-178, 1992).

 Log Transforma�on

Log transforma�on was carried out almost rou�nely for obtaining a more symmetric distribu�on prior to sta�s�cal analysis (De Livera AM, et al. Anal Chem.
84(24):10768-10776, 2012). It works for data where you can see that the residuals get bigger for bigger values of the dependent variable (De Livera AM, et al. Anal

https://idrblab.org/anpela/download/Spectral_Counting/IRMa-hEIDI_data.csv
https://idrblab.org/anpela/download/Spectral_Counting/proteinGroups_Spectral_Counting.txt
https://idrblab.org/anpela/download/Spectral_Counting/example_MFPaQ_Spectral_Counting.csv
https://idrblab.org/anpela/download/Spectral_Counting/example_ProteinProphet.csv
https://idrblab.org/anpela/download/Spectral_Counting/scaffold-label-free_Spectral_Counting.csv


Chem. 84(24):10768-10776, 2012). Such trends in the residuals occur o�en, because the error or change in the value of an outcome variable is o�en a percent of the
value rather than an absolute value (De Livera AM, et al. Anal Chem. 84(24):10768-10776, 2012).

 Variance Stabiliza�on Normaliza�on

Variance Stabiliza�on Normaliza�on (VSN) is one of the non-linear methods aiming to keep the variance constant over the en�re data range (Huber W, et al.
Bioinforma�cs. 18 S1:96-104, 2002; Kohl SM, et al. Metabolomics. 8(S1):146-160, 2012). VSN approaches the logarithm for large values to remove heteroscedas�city
using the inverse hyperbolic sine (Kohl SM, et al. Metabolomics. 8(Suppl 1):146-160, 2012). For small intensi�es, it performs linear transforma�on behavior to make the
variance unchanged (Kohl SM, et al. Metabolomics. 8(Suppl 1):146-160, 2012). VSN was originally developed as normaliza�on method for label-free rela�ve
quan�fica�on of endogenous pep�des (Kul�ma K, et al. Mol Cell Proteomics. 8(10):2285-2295, 2009).

3.2 Methods for Data Pretreatment 

Pretreatment Methods include 2 centering methods, 4 scaling methods and 12 normaliza�on methods.

3.2.1 Methods for Data Centering 

(methods sorted alphabe�cally)

 Mean Centering

Used for facilita�ng the improvement of the sensi�vity of significance test in spectral coun�ng-based compara�ve discovery proteomics (Gregori. J, et al. J Proteomics.
75(13):3938-51, 2012).

 Median Centering

Facilita�ng the normaliza�on procedures in LC-MS proteomics experiments through dataset dependent ranking of normaliza�on scaling factors (Webb-Robertson. B. J,
et al. Proteomics. 2011, 11(24): 4736-41).

3.2.2 Methods for Data Scaling 

(methods sorted alphabe�cally)

 Auto Scaling

Auto Scaling (Unit Variance Scaling, UV) is one of the simplest methods adjus�ng proteomics variances, which scales protein intensi�es based on the standard devia�on
of proteomics data (Kohl SM, et al. Metabolomics. 8(Suppl 1):146-160, 2012). This method scales all protein intensi�es to unit variance, and all intensi�es are equally
important and comparably scaled (Gromski PS, et al. Metabolomics. 11:684-695, 2015). The data is analyzed on the basis of correla�ons and standard devia�on of all
intensi�es, but the disadvantage of auto scaling is that analy�cal errors may be amplified due to dilu�on effects (Kohl SM, et al. Metabolomics. 8(Suppl 1):146-160,
2012). Auto scaling has been used to iden�fy proteomic biomarkers for psoriasis and psoriasis arthri�s (Reindl J, et al. J Proteomics. 140:55-61, 2016) and normalize LC-
MS proteomics data based on scan-level informa�on (Nezami Ranjbar MR, et al. Proteome Sci. 11(Suppl 1):S13, 2013).

 Pareto Scaling

Pareto Scaling uses the square root of the standard devia�on of the data as scaling factor (Kohl SM, et al. Metabolomics. 8(Suppl 1):146-160, 2012). This method is able
to reduce the weight of large fold changes in protein intensi�es, which is more significantly than auto scaling (Kohl SM, et al. Metabolomics. 8(Suppl 1):146-160, 2012).
But the dominant weight of extremely large fold changes may s�ll be unchanged (Kohl SM, et al. Metabolomics. 8(Suppl 1):146-160, 2012). Therefore, the disadvantage
of pareto scaling is the sensi�vity to large fold changes (Van den Berg RA, et al. BMC Genomics. 7:142, 2006). Pareto scaling was applied to normalize LC-MS proteomics
data using scan-level informa�on in the Gaussian process regression model (Nezami Ranjbar MR, et al. Proteome Sci. 11(Suppl 1):S13, 2013).

 Range Scaling

Range scaling uses this biological range as the scaling factor (Smilde AK, et al. Anal Chem 2005, 77:6729-6736). A disadvantage of range scaling with regard to the other
scaling methods tested is that only two values are used to es�mate the biological range, while for the standard devia�on all measurements are taken into account. This
makes range scaling more sensi�ve to outliers. To increase the robustness of range scaling, the range could also be determined by using robust range es�mators.
Manipula�ng the non-targeted ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS) proteomic/metabolomic data (Guida R. Di, et al.
Metabolomics. 2016, 1293).

 Vast Scaling

Vast scaling is an acronym of variable stability scaling and it is an extension of autoscaling (Keun HC, et al. Anal Chim Acta. 2003, 490:265-276). It focuses on stable
variables, the variables that do not show strong varia�on, using the standard devia�on and the so-called coefficient of varia�on (cv) as scaling factors. Vast scaling can
be used unsupervised as well as supervised. When vast scaling is applied as a supervised method, group informa�on about the samples is used to determine group
specific cvs for scaling. Assessing the impact of delayed storage on the measured proteome and metabolome of human cerebrospinal fluid (Rosenling T, et al. Clin Chem.
2011, 57(12): 1703-11).

3.2.3 Methods for Data Normaliza�on 

(methods sorted alphabe�cally)

 Cyclic Loess

Cyclic Loess (Cyclic Locally Weighted Regression) originates from the combina�on of MA-plot and logged Bland-Altman plot by assuming the existence of non-linear bias
(Kohl SM, et al. Metabolomics. 8(Suppl 1):146-160, 2012), and can es�mate a regression surface using mul�variate smoothing procedure (Webb-Robertson BJ, et al.
Metabolomics. 10(5):897-908, 2014). However, cyclic loess is one of the most �me-consuming one among the normaliza�on methods, and the amount of �me grows
exponen�ally as the number of sample increases (Ballman KV, et al. Bioinforma�cs. 20(16):2778-86, 2004). Cyclic loess has been applied in proteomics profiling in the
context of common experimental designs (Keeping AJ, et al. J Proteome Res. 10(3):1353-60, 2011).

 EigenMS



EigenMS removes bias of unknown complexity from the Liquid Chromatography coupled with Mass Spectrometry (LC/MS)-based proteomics data, allowing for
increased sensi�vity in differen�al analysis. EigenMS normaliza�on aims at preserving the original differences while removing the bias from the data (Välikangas T, et al.
Brief Bioinform. pii: bbw095, 2016). It works by 3 steps (Karpievitch YV, et al. PLoS One. 9(12):e116221, 2014): (1) EigenMS preserves the true differences in the
proteomics data by es�ma�ng treatment effects with an ANOVA model; (2) singular value decomposi�on of the residuals matrix is used to determine bias trends in the
data; (3) the number of bias trends is es�mated via a permuta�on test and the effects of the bias trends are eliminated. EigenMS has been applied in the profiling of
MS-based quan�ta�ve label-free proteomics and LC-based proteomics (Karpievitch YV, et al. BMC Bioinforma�cs. 13(S16):S5, 2012; Karpievitch YV, et al. Ann Appl Stat.
4(4):1797-1823,2010).

 Linear Baseline

Linear Baseline (Linear Baseline Scaling) maps each spectrum to the baseline based on the assump�on of a constant linear rela�onship between each feature of a given
spectrum and the baseline (Kohl SM, et al. Metabolomics. 8(Suppl 1):146-160, 2012). The baseline is the median of each feature across all spectra and the scaling factor
is computed as the ra�o of the mean intensity of the baseline to the mean intensity of each spectrum (Kohl SM, et al. Metabolomics. 8(Suppl 1):146-160, 2012). The
intensi�es of all spectra are mul�plied by their par�cular scaling factors (Kohl SM, et al. Metabolomics. 8(Suppl 1):146-160, 2012). However, this assump�on of a linear
correla�on among sample spectra may be oversimplified (Kohl SM, et al. Metabolomics. 8(Suppl 1):146-160, 2012).

 Locally Weighted Sca�erplot Smoothing

Locally Weighted Sca�erplot Smoothing (Lowess) is a method used to normalize a two-color array gene expression dataset to compensate for non-linear dye-bias. In
this approach, the log-ra�o for each sample is adjusted by the lowess fi�ed value (Yang YH, et al. Proc Spie. 6(10):1-21, 2003). Lowess normaliza�on assumes that the
dye bias appears to be dependent on spot intensity (Yang YH, et al. Proc Spie. 6(10):1-21, 2003). Lowess normaliza�on can be applied to complete or incomplete
datasets and may be applied to a two-color array expression dataset (Yang YH, et al. Proc Spie. 6(10):1-21, 2003). This method has been used in MS-based proteomics
(Karpievitch YV, et al. BMC Bioinforma�cs. 13(S16):S5, 2012)

 Mean

Mean Normaliza�on normalizes the data by mean value of all signals to eliminate background effect (Andjelkovic V, et al. Plant Cell Rep. 25(1):71-9, 2006). Intensity of
each protein in a given sample is used by the mean of intensity of all variables in the sample (De Livera AM, et al. Anal Chem. 84(24):10768-10776, 2012). In order to
make the samples comparable, the means of the intensi�es for each experimental run are forced to be equal to one another using this method (Ejigu BA, et al. OMICS.
17(9):473-485, 2013). For example, each sample is scaled such that the mean of all abundances in a sample equals one (De Livera AM, et al. Anal Chem. 84(24):10768-
10776, 2012). This method has been used in the profiling of urine pep�dome (Padoan A, et al. Proteomics. 15(9):1476-1485, 2015).

 Median

Median normaliza�on is based on the assump�on that the samples of a dataset are separated by a constant. It scales the samples so that they have the same median.
For example, the median of the protein intensi�es in the sample equals one (Bolstad BM, et al. Bioinforma�cs. 19(2):185-93, 2003). The median normaliza�on, the
commonly used method without the need for internal standards, is more prac�cal than the sum normaliza�on especially in situa�ons where several saturated
abundances may be associated with some of the factors of interest (Bolstad BM, et al. Bioinforma�cs. 19(2):185-93, 2003). It has previously been used in MS-based
label-free proteomics analysis for removing systema�c biases associated with mass spectrometry (Callister SJ, et al. J Proteome Res. 5(2):277-86, 2006).

 Median Absolute Devia�on

The Median Absolute Devia�on (MAD) is a robust measure of the spread of the data, and is used as an es�mate of the sample standard devia�on if scaled by a factor of
1.483, and it is a simple way to quan�fy varia�on (Matzke MM, et al. Bioinforma�cs. 27(20):2866-2872, 2011). This method has been used to improve the quality
control process of pep�de-centric LC-MS proteomics data (Matzke MM, et al. Bioinforma�cs. 27(20):2866-2872, 2011).

 Probabilis�c Quo�ent Normaliza�on

PQN (Probabilis�c Quo�ent Normaliza�on) transforms the proteomics spectra according to an overall es�ma�on on the most probable dilu�on (Dieterle F, et al. Anal
Chem. 78(13):4281-4290, 2006). This algorithm has been reported to be significantly robust and accurate comparing to the integral and the vector length normaliza�ons
(Dieterle F, et al. Anal Chem. 78(13):4281-4290, 2006). There are three steps in the procedure of PQN24: (1) perform an integral normaliza�on of each spectrum, then
select a reference spectrum such as the median spectrum; (2) calculate the quo�ent between a given test spectrum and reference spectrum, then es�mate the median
of all quo�ents for each variable; (3) all variables of the test spectrum are divided by the median quo�ent. PQN has been applied in MALDI-TOF mass spectrometry
knowledge discovery (López-Fernández H, et al. BMC Bioinforma�cs. 16:318, 2015).

 Quan�le

Quan�le (Quan�le Normaliza�on) aims at achieving the same distribu�on of protein intensi�es across all samples, and the quan�le-quan�le plot in this method is used
to visualize the distribu�on similarity (Kohl SM, et al. Metabolomics. 8(Suppl 1):146-160, 2012). Quan�le normaliza�on is mo�vated by the idea that the distribu�on of
two data vectors is the same if the quan�le-quan�le plot is a straight diagonal line (Bolstad BM, et al. Bioinforma�cs. 19(2):185-93, 2003). While a common and non-
data driven distribu�on is generated using quan�le normaliza�on, an agreed standard could not be reached (Bolstad BM, et al. Bioinforma�cs. 19(2):185-93, 2003).
Quan�le normaliza�on has been adopted for removing systema�c biases associated with mass spectrometry and label-free proteomics (Callister SJ, et al. J Proteome
Res. 5(2):277-86, 2006).

 Robust Linear Regression

Robust Linear Regression is used for transference: when you want to rescale one reference interval to another scale. The robust linear regression is more robust against
outliers in the data than linear regression using least squares es�ma�on (Välikangas T, et al. Brief Bioinform. pii: bbw095, 2016). This method has been used to minimize
plate effects of suspension bead array data (Hong MG, et al. J Proteome Res. 15(10):3473-3480, 2016).

 Tol Ion Current

Tol Ion Current sum all the separate ion currents carried by the ions of different m/z contribu�ng to a complete mass spectrum or in a specified m/z range of a mass
spectrum. And the sum of all peak areas of pep�des unique to a par�cular organism was here called pTIC (proteome total ion current) (Gaspari M, et al. Anal Chem.
88(23):11568-11574, 2016). This method has been used in MALDI-TOF and SELDI-TOF mass spectra proteomic profiling (Borgaonkar SP, et al. OMICS. 14(1):115-26,
2010).

 Trimmed Mean of M Values

Trimmed Mean of M Values (TMM) normaliza�on is a simple and effec�ve method for es�ma�ng rela�ve RNA produc�on levels from RNA-seq data (Lin Y, et al. BMC
Genomics. 17:28, 2016). It es�mates scale factors between samples that can be incorporated into currently used sta�s�cal methods for differen�al expression analysis
(Lin Y, et al. BMC Genomics. 17:28, 2016). The Trimmed Mean of M-values normaliza�on methods were sensi�ve to the removal of low-expressed genes from the data
set in RNA-Seq data (Lin Y, et al. BMC Genomics. 17:28, 2016).



3.3 Methods for Missing Value Imputa�on 

(methods sorted alphabe�cally)

 Background Imputa�on (BACK)

All missing values were replaced with the lowest detected intensity value of the data set. This imputa�on simulates the situa�on where protein values are missing
because of having small concentra�ons in the sample and thus cannot be detected during the MS run (Chai LE, et al. Malays J Med Sci. 21(2):20-2, 2014). The lowest
intensity value detected is therefore imputed for the missing protein values as a representa�ve of the background (Chai LE, et al. Malays J Med Sci. 21(2):20-2, 2014).

 Bayesian Principal Component Imputa�on (BPCA)

Bayesian Principal Component Imputa�on (BPCA) out-performs the kNN and SVD imputa�on methods (Chai LE, et al. Malays J Med Sci. 21(2):20-22, 2014). One of the
features of BPCA that allows it to provide a be�er performance than the la�er two methods is its capacity to auto-select the parameters used in the es�ma�on (Chai LE,
et al. Malays J Med Sci. 21(2):20-22, 2014). This method also produces improved es�ma�on performance when the number of the samples is huge (Chai LE, et al.
Malays J Med Sci. 21(2):20-22, 2014).

 Censored Imputa�on (CENSOR)

If only a single NA for a protein in a sample group was found, it was considered as being ‘missing completely at random’, and no value was imputed for it (Välikangas T,
et al. Brief Bioinform. doi: 10.1093/bib/bbx054, 2017). If a protein contained more than one missing value in a sample group (consis�ng of technical replicates), they
were considered missing because of being below detec�on capacity, and the lowest intensity value in the data set was imputed for them. (Välikangas T, et al. Brief
Bioinform. doi: 10.1093/bib/bbx054, 2017).

 K-nearest Neighbor Imputa�on (KNN)

The kNN impute method aims to iden�fy k genes that are very similar to the genes with missing values, where the similarity is es�mated by the Euclidean distance
measure, and the missing values are imputed with the values of weighted average from these neighbouring genes (Chai LE, et al. Malays J Med Sci. 21(2):20-2, 2014).
KNN-based methods tend to select genes with expression profiles similar to the gene of interest to impute missing values, and KNN outperforms BPCA and LLS with
rela�vely small size datasets (Chai LE, et al. Malays J Med Sci. 21(2):20-2, 2014).

 Local Least Squares Imputa�on (LLS)

Local Least Squares Imputa�on (LLS) exploits the local similarity structures in the data, as well as the least squares op�misa�on process (Chai LE, et al. Malays J Med Sci.
21(2):20-2, 2014). The proposed local least squares imputa�on method (LLSimpute) represents a target gene that has missing values as a linear combina�on of similar
genes (Kim H, et al. Bioinforma�cs. 21(2):1-12, 2004). The similar genes are chosen by k-nearest neighbors or k coherent genes that have large absolute values of
Pearson correla�on coefficients. Nonparametric missing values es�ma�on method of LLSimpute are designed by introducing an automa�c k-value es�mator (Kim H, et
al. Bioinforma�cs. 21(2):1-12, 2004).

 Singular Value Decomposi�on (SVD)

Singular value decomposi�on (SVD) SVD is also known as Karhunen–Loève expansion in pa�ern recogni�on and as principal-component analysis in sta�s�cs (Alter O, et
al. PNAS. 97(18):10101-10106, 2000). SVD is a linear transforma�on of the expression data from the genes × arrays space to the reduced “eigengenes” × “eigenarrays”
space (Alter O, et al. PNAS. 97(18):10101-10106, 2000). In contrast to the KNN imputa�on which u�lizes local pairwise informa�on between genes in the gene
expression matrix, SVD imputa�on a�empts to u�lize the global informa�on in the en�re matrix in predic�ng the missing values (Gan X, et al. Nucleic Acids Res.
34(5):1608-1619, 2006). The basic concept about this method is to find the dominant components summarizing the en�re matrix and then to predict the missing values
in the target genes by regressing against the dominant components (Gan X, et al. Nucleic Acids Res. 34(5):1608-1619, 2006).

 Zero Imputa�on (ZERO)

The simplest imputa�on method is by replacing the missing values with zeros. This zero replacement method does not u�lize any informa�on about the data (Gan X, et
al. Nucleic Acids Res. 34(5):1608-1619, 2006). In fact, the integrity and usefulness of the data can be jeopardized by zero imputa�on since erroneous rela�onships
between genes can be ar�ficially created due to the imputa�on (Gan X, et al. Nucleic Acids Res. 34(5):1608-1619, 2006).

4. Diverse MS Systems for Proteome Quan�fica�on 

Those popular kinds of so�ware listed in the Sec�on 2 of this Manual aim at quan�fying the raw proteomics data derived from a diverse set of MS systems including the
AB SCIEX Q-TOF systems, the Agilent Q-TOF mass spectrometer, the Bruker hybrid Q-TOF mass spectrometer and the Thermo Fisher Scien�fic Orbitrap.

4.1 AB SCIEX Q-TOF Systems

 AB SCIEX QTRAP Systems (QTRAP 6500+ System, QTRAP 6500 System, QTRAP 5500 System, QTRAP 4500 System, QTRAP 4000 System, QTRAP 3200 System)

 AB TOF/TOF Systems (TOF/TOF 5800 System)

 AB Triple Quad Systems (Triple Quad 6500+ System, Triple Quad 6500 System, Triple Quad 5500 System, Triple Quad 4500 System, Triple Quad 3500 System, API
4000 System, API 3200 System)

 TripleTOF Systems (TripleTOF 6600 System, TripleTOF 5600+ System, TripleTOF 4600 System)

 X-Series QTOF Systems (X500B QTOF system, X500R QTOF System)

4.2 Agilent Q-TOF



 Agilent 6530 Accurate-Mass Quadrupole Time-of-Flight LC/MS system

4.3 Bruker Hybrid Q-TOF Mass Spectrometer

4.4 Thermo Fisher Scien�fic Orbitrap
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